The Rotarex®S catheter in therapy of occluded lower limb bypass

Assoc. Prof. Miroslav Bulvas MD, PhD.

King’s Vineyards Hospital, Interventional Angiology Division, Department of Surgery, School of Medicine 3, Charles University, Prague, Czech Republic

The goal of surgical and/or endovascular therapy in patients with lower limb ischemia is the elimination of return or progression of serious and threatening ischemic symptoms (rest pain, ischemic ulcers or gangrene)1-3. Thus, bypass occlusion can be associated with renewed acute or critical ischemia and endangered lower extremity.

Early (<30 days) graft failure rate 6.3\% was reported in the study that collected 9,217 bypass procedures4 with higher frequency in preceding emergency and re-operative procedures (8.2\%). Typically, it can be ascribed to technical factors (kinking or twisting of the graft, technical anastomotic problems, inadequate runoff, clamp injury, retained valves) and prothrombotic state5. Intermediate graft failure (from 30 days to 18 months) is commonly associated with myointimal hyperplasia formation at the sites of anastomoses or valves (venous bypass grafts).
Late graft failure is largely caused by the progression of atherosclerosis in the outflow or inflow vessels (Figures 1-6). Excellent and long-lasting results (5-year primary patency rate 85-88%) can be expected with aortoiliac reconstruction in low risk patients. Acute thrombosis of an aortofemoral graft limb occurs in about 2% of patients during the early perioperative period\(^6\). Primary patency rates 87-100% (1 month), 69-86% (1 year) and 51-72% (5 years) were reported\(^7\) in femoropopliteal bypasses with better results for suprageniculate and autologous saphenous grafts.

Patients who have undergone placement of lower limb bypass grafts are followed up with periodic evaluations that record return or progression of ischemic symptoms. Therefore, hemodynamic deterioration caused by progression of proximal or distal atherosclerosis and/or intimal hyperplasia can be detected before thrombosis and occlusion develop. In those cases, preventive balloon angioplasty, stenting or percutaneous atherectomy are used to assist the primary patency.

Surgical treatment of acutely thrombosed vein graft is usually associated with thrombectomy, thrombolysis and subsequent repair of the defects responsible for graft failure. Unfortunately, only 23% of vein grafts remained patent 3 years after successful thrombolysis and revision\(^5,8\). For intermediate to late vein graft failure, a new surgical reconstruction is recommended in patients with threatened extremity. Nevertheless, advanced comorbidities and anatomy can preclude major reoperation. Furthermore, it can be difficult to find sufficient vein for reoperation in patients with occluded prosthetic grafts. For secondary bypass grafts, 25% primary patency (prosthetic) and 43% (autogenous vein) were reported\(^5\) five years after reoperation.

Surgical or thrombolytic limitation is the driving force for usage of the modalities with purely endovascular, mechanical approach in the management of occluded bypasses. For the Rotarex®S catheter, 98-100% technical success was reported in the series with acute and subacute occlusions of femoropopliteal bypasses\(^9,10\). Lichtenberg et al. managed 22 patients with venous (12) and prosthetic (10) occluded bypasses without major complication, death or reintervention during 6-month follow-up. Wissgott et al. reported 98 % technical success in 42 patients with 81% of venous bypasses, 4.8% of complications (no amputation, no death) and 66 % of 12-month primary patency. Zeller et al.\(^11\) reported lower primary success (78%) in 9 patients with occluded femoropopliteal bypasses compared to 91 cases of infra-aortic occlusions. Mixed series of 316 patients\(^12\) with acute and subacute lower limb ischemia (72 femoropopliteal bypass occlusions) reached 100% technical success at the level of target vessels with only a minor complication (8%) associated with debulking therapy. The overall therapeutic success was negatively influenced by infrapopliteal artery status and the low potential for effective endovascular and surgical treatment in this runoff area.
71-year-old man with subacute, right lower limb ischemia, category Rutherford 3, prosthetic proximal femoropopliteal (FP) bypass thrombosis (antegrade approach).

(A) Occlusion of prosthetic FP bypass at its origin (arrow). (B) The popliteal artery (PA) (arrow) is filled via collaterals. (C) Angiogram after bypass recanalization with the Rotarex®. (D) Residual stenosis at the distal anastomosis (arrow). (E) Final angiogram after balloon angioplasty (PTA) and stenting (arrow).
73-year-old man with acute, left lower limb ischemia IIa and proximal, prosthetic FP bypass thrombosis (antegrade approach). (A) Occlusion of prosthetic FP bypass at its origin (arrow). Thrombus penetrated with guidewire (double arrow). (B) Selective angiogram: distal anastomosis (double arrow). (C) Residual stenosis at the distal anastomosis (arrow) after the Rotarex®S debulking. (D) Proximal stenosis after stenting (double arrow). (E) Patent bypass after debulking. (F) Residual stenosis: distal anastomosis (arrow). (G) Distal anastomosis after PTA. (H) PA (arrow) and tibial vessels.
61-year-old man with subacute ischemia of left lower limb, category Rutherford 4, proximal, prosthetic FP bypass thrombosis (antegrade approach). (A) Occluded FP prosthetic bypass insertion (arrow), stenosis of deep femoral artery (DFA). (B) PA filled via collaterals: distal anastomosis labeled by arrow. (C) Rotarex®S (arrow) ready for debulking. (D)+(E) Distal anastomosis after bypass debulking with the Rotarex®S (arrow). (F) Distal anastomosis. (G) Distal anastomosis (arrow) after PTA and stenting. (H) Tibial vessels.
85-year-old man with acute ischemia IIb of left lower limb and thrombosis of prosthetic, distal FP bypass (antegrade approach). (A) Occluded distal FP bypass at its proximal insertion, patent DFA (arrow). (B) Popliteal artery (arrow) and distal anastomosis (double arrow). (C)+(D) Patent bypass (arrow) after Rotarex® debulking. (E) Residual thrombi in tibioperoneal trunk and posterior tibial artery (double arrow), residual stenosis in distal anastomosis. (F) Distal anastomosis (arrow) after debulking and PTA. (G) Selective angiography of tibioperoneal trunk and posterior tibial artery (double arrows) after clot removal by percutaneous aspiration thromboembolectomy (PAT).
Figure 6

55-year-old man with acute ischemia IIa and thrombosis of distal venous FP bypass. Proximal anastomosis is located in superficial femoral artery (antegrade approach). (A) Arrow depicts distal anastomosis site. (B) Arrow depicts distal anastomosis of occluded bypass. (C) Selective angiography of distal anastomosis (double arrows) before recanalization. (D) Angiogram after debulking. Extravasation (arrow) occurred after adjunctive PTA and was excluded with stentgraft. (E) Final angiogram of recanalized bypass.

Conclusion
Debulking with the Rotarex®S catheter can be safely and efficiently used as an initial treatment in patients with occluded lower limb bypasses especially in those, at high surgical risk or predisposed to bleeding.
References

2. Norgren L, Hiatt WR, Dormandy JA et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). Eur J Vasc Endovasc Surg 2007;33(Suppl. 1):S1-75

